Lesson No. 11

Multiplication in Assembly Language

In the multiplication algorithm discussed above we revised the way we multiplied number in lower classes, and gave an example of that method on binary numbers. We make a simple modification to the traditional algorithm before we proceed to formulate it in assembly language.

In the traditional algorithm we calculate all intermediate answers and then sum them to get the final answer. If we add every intermediate answer to accumulate the result, the result will be same in the end, except that we do not have to remember a lot of intermediate answers during the whole multiplication. The multiplication with the new algorithm is shown below.

 1101 = 13
Accumulated Result

 0101 = 5

 ----- 0 (Initial Value)

 1101 = 13
0 + 13 = 13

 0000x = 0

13 + 0 = 13

 1101xx = 52
13 + 52 = 65

 0000xxx = 0

65 + 0 = 65 (Answer)

We try to identify steps of our algorithm. First we set the result to zero. Then we check the right most bit of multiplier. If it is one add the multiplicand to the result, and if it is zero perform no addition. Left shift the multiplicand before the next bit of multiplier is tested. The left shifting of the multiplicand is performed regardless of the value of the multiplier’s right most bit. Just like the crosses in traditional multiplication are always placed to mark the ones, tens, thousands, etc. places. Then check the next bit and if it is one add the shifted value of the multiplicand to the result. Repeat for as many digits as there are in the multiplier, 4 in our example. Formulating the steps of the algorithm we get:

· Shift the multiplier to the right.

· If CF=1 add the multiplicand to the result.

· Shift the multiplicand to the right.

· Repeat the algorithm 4 times.

For an 8bit multiplication the algorithm will be repeated 8 times and for a sixteen bit multiplication it will be repeated 16 times, whatever the size of the multiplier is.

The algorithm uses the fact that shifting right forces the right most bit to drop in the carry flag. If we test the carry flag using JC we are effectively testing the right most bit of the multiplier. Another shifting will cause the next bit to drop in the next iteration and so on. So our task of checking bits one by one is satisfied using the shift operation. There are many other methods to do this bit testing as well, however we exemplify one of the methods in this example.

In the first iteration there is no shifting just like there is no cross in traditional multiplication in the first pass. Therefore we placed the left shifting of the multiplicand after the addition step. However the right shifting of multiplier must be before the addition as the addition step’s execution depends upon its result.

We introduce an assembly language program to perform this 4bit multiplication. The algorithm is extensible to more bits but there are a few complications, which are left to be discussed later. For now we do a 4bit multiplication to keep the algorithm simple.

	
	Example 4.1

	01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23
	; 4bit multiplication algorithm

[org 0x100]

 jmp start

multiplicand: db 13 ; 4bit multiplicand (8bit space)

multiplier: db 5 ; 4bit multiplier

result: db 0 ; 8bit result

start: mov cl, 4 ; initialize bit count to four

 mov bl, [multiplicand] ; load multiplicand in bl

 mov dl, [multiplier] ; load multiplier in dl

checkbit: shr dl, 1 ; move right most bit in carry

 jnc skip ; skip addition if bit is zero

 add [result], bl ; accumulate result

skip: shl bl, 1 ; shift multiplicand left

 dec cl ; decrement bit count

 jnz checkbit ; repeat if bits left

 mov ax, 0x4c00 ; terminate program

 int 0x21

	04-06

07

14-16

18

19

20

	The numbers to be multiplied are constants for now. The multiplication is four bit so the answer is stored in an 8bit register. If the operands were 8bit the answer would be 16bit and if the operands were 16bit the answer would be 32bit. Since eight bits can fit in a byte we have used 4bit multiplication as our first example.

Since addition by zero means nothing we skip the addition step if the rightmost bit of the multiplier is zero. If the jump is not taken the shifted value of the multiplicand is added to the result.

The multiplicand is left shifted in every iteration regardless of the multiplier bit.

DEC is a new instruction but its operation should be immediately understandable with the knowledge gained till now. It simply subtracts one from its single operand.

The JNZ instruction causes the algorithm to repeat till any bits of the multiplier are left

Inside the debugger observe the working of the SHR and SHL instructions. The SHR instruction is effectively dividing its operand by two and the remainder is stored in the carry flag from where we test it. The SHL instruction is multiplying its operand by two so that it is added at one place more towards the left in the result.

1.1. Extended Operations

We performed a 4bit multiplication to explain the algorithm however the real advantage of the computer is when we ask it to multiply large numbers. Numbers whose multiplication takes real time. If we have an 8bit number we can do the multiplication in word registers, but are we limited to word operations? What if we want to multiply 32bit or even larger numbers? We are certainly not limited. Assembly language only provides us the basic building blocks. We build a plaza out of these blocks, or a building, or a classic piece of architecture is only dependant upon our imagination. With our logic we can extend these algorithms as much as we want.

Our next example will be multiplication of 16bit numbers to produce a 32bit answer. However for a 32bit answer we need a way to shift a 32bit number and a way to add 32bit numbers. We cannot depend on 16bit shifting as we have 16 significant bits in our multiplicand and shifting any bit towards the left may drop a valuable bit causing a totally wrong result. A valuable bit means any bit that is one. Dropping a zero bit doesn’t cause any difference. So we place the 16it number in 32bit space with the upper 16 bits zeroed so that the sixteen shift operations don’t cause any valuable bit to drop. Even though the numbers were 16bit we need 32bit operations to multiply correctly.

To clarify this necessity, we take example of a number 40000 or 9C40 in hexadecimal. In binary it is represented as 1001110001000000. To multiply by two we shift it one place to the left. The answer we get is 0011100010000000 and the left most one is dropped in the carry flag. The answer should be the 17bit number 0x13880 but it is 0x3880, which is 14464 in decimal instead of the expected 80000. We should be careful of this situation whenever shifting is used.

Extended Shifting

Using our basic shifting and rotation instructions we can effectively shift a 32bit number in memory word by word. We cannot shift the whole number at once since our architecture is limited to word operations. The algorithm we use consists of just two instructions and we name it extended shifting.

num1: dd 40000

 shl word [num1], 1
 rcl word [num1+2], 1

The DD directive reserves a 32bit space in memory, however the value we placed there will fit in 16bits. So we can safely shift the number left 16 times. The least significant word is accessible at num1 and the most significant word is accessible at num1+2.

The two instructions are carefully crafted such that the first one shifts the lower word towards the left and the most significant bit of that word is dropped in carry. With the next instruction we push that dropped bit into the least significant bit of the next word effectively joining the two 16bit words. The final carry after the second instruction will be the most significant bit of the higher word, which for this number will always be zero.

The following illustration will clarify the concept. The pipe on the right contains the lower half and the pipe on the left contains the upper half. The first instruction forced a zero from the right into the lower half and the left most bit is saved in carry, and from there it is pushed into the upper half and the upper half is shifted as well.

[image: image1]
For shifting right the exact opposite is done however care must be taken to shift right the upper half first and then rotate through carry right the lower half for obvious reasons. The instructions to do this are.

num1: dd 40000

 shr word [num1+2], 1
 rcr word [num1], 1

The same logic has worked. The shift placed the least significant bit of the upper half in the carry flag and it was pushed from right into the lower half. For a singed shift we would have used the shift arithmetic right instruction instead of the shift logical right instruction.

The extension we have done is not limited to 32bits. We can shift a number of any size say 1024 bits. The second instruction will be repeated a number of times and we can achieve the desired effect. Using two simple instructions we have increased the capability of the operation to effectively an unlimited number of bits. The actual limit is the available memory as even the segment limit can be catered with a little thought.

Extended Addition and Subtraction

We also needed 32bit addition for multiplication of 16bit numbers. The idea of extension is same here. However we need to introduce a new instruction at this place. The instruction is ADC or “add with carry.” Normal addition has two operands and the second operand is added to the first operand. However ADC has three operands. The third implied operand is the carry flag. The ADC instruction is specifically placed for extending the capability of ADD. Numbers of any size can be added using a proper combination of ADD and ADC. All basic building blocks are provided for the assembly language programmer, and the programmer can extend its capabilities as much as needed by using these fine instructions in appropriate combinations.

Further clarifying the operation of ADC, consider an instruction “ADC AX, BX.” Normal addition would have just added BX to AX, however ADC first adds the carry flag to AX and then adds BX to AX. Therefore the last carry is also included in the result.

The algorithm should be apparent by now. The lower halves of the two numbers to be added are firsted added with a normal addition. For the upper halves a normal addition would lose track of a possible carry from the lower halves and the answer would be wrong. If a carry was generated it should go to the upper half. Therefore the upper halves are added with an addition with carry instruction.

Since one operand must be in register, ax is used to read the lower and upper halves of the source one by one. The destination is directly updated. The set of instructions goes here.

dest: dd 40000
src: dd 80000

 mov ax, [src]
 add word [dest], ax
 mov ax, [src+2]
 adc word [dest+2], ax

To further extend it more addition with carries will be used. However the carry from last addition will be wasted as there will always be a size limit where the results and the numbers are stored. This carry will remain in the carry flag to be tested for a possible overflow.

For subtraction the same logic will be used and just like addition with carry there is an instruction to subtract with borrow called SBB. Borrow in the name means the carry flag and is used just for clarity. Or we can say that the carry flag holds the carry for addition instructions and the borrow for subtraction instructions. Also the carry is generated at the 17th bit and the borrow is also taken from the 17th bit. Also there is no single instruction that needs borrow and carry in their independent meanings at the same time. Therefore it is logical to use the same flag for both tasks.

We extend subtraction with a very similar algorithm. The lower halves must be subtracted normally while the upper halves must be subtracted with a subtract with borrow instruction so that if the lower halves needed a borrow, a one is subtracted from the upper halves. The algorithm is as under.

dest: dd 40000
src: dd 80000

 mov ax, [src]
 sub word [dest], ax
 mov ax, [src+2]
 sbb word [dest+2], ax

Step 1 (

1

1

1

0

1

0

0

0

0

C

1

1

1

0

1

0

0

0

C

(Step 2

